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Abstract. We consider the twisting of the Hopf Srmcture for the classical enveloping algebra 
U@), where p is an inhomogenous rotation algebra, with explicit formulae given for the 
D = 4 Poinard algebra. (p = P4). The comultiplicarions of twisted U‘(P4) are obtained by 
conjugating the primitive classical coproducts by F E U(?)@U(& where e denotes any Abelian 
subalgebra of P4, and the universal R-mauices for UF(P4) are hiangular. As an e m p l e  we 
show that the quanNm deformation of the Poincare algebra recently proposed by Chaichian and 
Demiczev .is a twisted classical Poinw6 Q e b m  The interpretarion of the hvisted P o i n d  
algebra as describing relativistic symmetries with clustered two-particle states is proposed. 

1. Introduction 

Let us consider the Poincar.6 algebra 7’4 with the generators 2 = (P,. Mpu)  as a classical 
Hopf algebra. We supplement the well known algebraic relations 

[M,,. Mp,l = i(g,&, - gv,Mpp + gvpMpr - g p , M d  

[M,,. PPI = i(gvPpp -g&) 

P p ,  P”l = 0 

(1.1) 

by the ‘primitive’ coproduct relations 

Ao(Mpv) = Mpu 8 1 + 1 8  M p y  
(1.2) 

Ao(PJ = P, 8 1 + 18 Pp 

and the antipode S&) = -2 (2 E ’P4). Relations (1.1) lead to the well known Wigner 
theory of representations of the Poincar.6 algebra [1,2] which are spanned by the Hilbert 
vectors Im, s; p N ,  S3), where m and s describe, respectively, the eigenvalues of mass and the 
relativistic spin (Pauli-Lubanski) Casimir, p p  is the four-momentum and S3 (4 < S3 < S) 
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describes the spin-projection values. The coproduct formula dictates how to calculate the 
action of the Poincard generators on the tensor product. 

The quantum deformations of the Poincard algebra are described by modifications to 
the relations (1.1). (1.2) preserving the Hopf-algebra structure (for the general framework 
see, e.g., [3,41). In this paper we would like to consider the mildest quantum deformations 
of (1.1). (1.2) obtained by the twisting procedure [5-9]. Following Drinfeld [SI, two Hopf 
algebras d = (A, A, S, E )  and dF = (A, AF, SF, E )  are related by twisting if there exists 
an invertible function F = xi fi 0 f' E A 8  dt satisfying the 'cocycle' condition [5,7,8] 

(1.3) F u ( l 8  A)F = F d A  9 1)F 

and (E Q l )F  = (1 8 E)F = 1. 
(a 0 b .  c @ d  = acQ bd) 

In such a case AF and A are related as follows 

AF(a) F. A(u). F-I. (1.4~) 

Introducing U = xi fi . S(f') one also obtains that 

SF(a) = us(a)u-'. (1.4b) 
If d is the quasi-hiangular Hopf algebra and relations (1.3) are replaced by [5,6] 

(A@l)F=F13Fu (lQA)F=Fr3Fiz (1.5) 
then the universal R-mahices for A and dF are related by the formulae ( P  = U . F = 

R~ =F-' .R. f. (1.6) 

cif's fi) 

For the complex simple Lie algebras i, twistings described by 

F = e x p f  fcic32 (1.7) 
where 2 is a subalgebra of i (Cartan subalgebra in [6], Bore1 subalgebra in [SI) were 
considered. It is easy to check that if f E 2 63 2 and 2 is Abelian, then conditions (1.5) are 
valid. 

In this paper we shall consider the twisting of the physically important case of 
inhomogeneous rotation algebras i = O ( D  - k ,  k) D TD, in particular the D = 4 Poincar6 
algebra i = O(3,l) 3 T4. In such non-simple algebras one can select a commutative 
subalgebra P in several ways, using, e.g., 

(i) a Cartan subalgebra (hl , . . . , h,) (n = 3 I D for D even, n = (D - I) for D odd); 
(ii) translation generators (PI . ..PO); or 
(iii) a 'mixed' Cartan-transIation algebra Ck (k < iD) 

ck = (hl . . .hr. ... PO). (1.8) 
The aim of this paper is (i) to describe the twistings of U,(P4) depending on Cartan 
generators and translation generators and (ii) to provide an interesting example. 

In section 2 we shall consider in an explicit way the twisted D = 4 Poincard algebras 
UF(P4) with the choice of algebra (see (1.7)) described by formula (1.8) with k = 0, 1,2. 
Futher generalization in the presence of central generators Zi ([Z,, 21 = 0 for 2 E P4) 
is also given. In section 3 we shall discuss, as an example of a classical twisted Poincard 
algebra, the quantum Poincard algebra considered recently by Chaichian and Demiczev [IO]. 
In section 4 we shall discuss the elements of the representation theory of twisted Poincark 
algebras and present an outlook some generalizations as well as unsolved problems. 

t Strictly speaking, we consider below F as belonging to an extemion of A @ A. 
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2. "isting of the classical Poinear6 algebra 

Let us denote the basis of the commutative algebra 2(F E 2 8 2) by (c1 . . . c,). We define 

F = F+F- F* = exp f* (2.1) 

where f+ = fa . f* (U is the exchange map: u(ci 8 c j )  = cj 8 ci) and 

(2.2) 

If we twist the coproducts of the classical Lie algebra we obtain from the commutativity 

(2.3) 

(+) - 1 (+) f - z"jj (Ci 8 cj f cj 8 Ci) 

i.e. one can assume that qij = fa+ji. 

of 2 that 

U = Cfi . ~ ( f )  = exp(-a+ijcic,) 

and after using (1.6) the R-matrix takes the particular form 

R = exp(-zf-) = (F-)". (2.4) 

The formulae for the c.oprcduct A' depend on the particular choice of the algebra 5. We 
shall further specify our algebra for the case of classical Poincare algebra (1.1) and we shall 
consider the following three types of twist function: 

(i) t = (M3 = MIZ.  N3 = hf30). 
We postulate 

f+ 
f-~= B-(M3 8 N3 - N3 8 M3). 

a t M 3  8 M3 + B+(M3 8 N3 + N3 8 M3) + ~ t N 3  8 N3 
(2.5) 

One obtains (Mi = fcijxMjk; M* Ml f iMz; Ni Mia; P+ = PI f iPz) 
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where 

f+ = P 3 P ,  @ Pv + Pv @ P,) 

f- = P’”(P, 8 P” - P, @ P,). 
(2.11) 

Because the split Casimir 

(2.12) 

commutes with A(;) for any ri G u ( P ~ ) ,  one can assume further that pyqMV = p; = o 
(q,” = diag(1, -1, -1, -1)). 

split - 
Cz = A(P,P’) - PpP” @ 1 - 1 @ P,P” 2P, @ P? 

The formulae for the coproduct take the form 

A F ( M p u )  = M,, 8 1 + 1 @ M,, 
+ (a+,pP” - (uI”QP,) 8 Pp + pp @ (Or+,PP” - a + / P , )  

+ (a-,PPy - a_,PP,) @ Pp - Pp @ (a-,PP” - a-.PP,) 
(2.13) 

AF(P,)  = P, 8 1 + 1 8 P,. 

In general we assume that the Poincar€ algebra is the complex one and that the twist 
function parameters are also complex. The reality condition imposed on the Poincar.5 
generators imply the reality conditions for the coefficients in formulae (2.5). (2.7), (2.9) 
and (2.1 1). For simplicity we shall consider the last example of the twist function, given by 
(2.11). It is known that if the real structure is an antihomomorphism in the algebra sector, 
one can still impose two types of reality conditions on the generators of twisted Po incd  
dgebra [lo, 111: 

(i) The standard one, denoted in [ll] by +. In the case of formulae (2.13) one obtains 

(2.14~) 

(ii) The non-standard one, used, e.g., in [121, and denoted in [ll] by $. In such a case 

(2.14b) 

(A(&,))+ = A(df ,J  j aPT real. 

(A(M,”))@ = A(M,”) j apr = (arP)’ 

i.e. the matrix a 3 (an‘) is Hermitian. 
Finally we consider the extension of i by an Abelian algebra i(i + 2 $ i) with 

Z A ( A  = 1. . . . , n) describing the central charges. The formulae (2.2) determining the twist 
function can be extended as follows 

(2.15) (2) - 
,f& --f fi - fi $. i f i* iA(ci  ‘8 ZA f Z A  ‘8 c i ) .  



2394 J Lukierski et al 

The candidates for Z, are the central charges as well as the Casimir operators. As an 
example, we shall consider case (iv) with one central charge Z, i.e. we assume that formulae 
(2.11) are extended as follows 

f* -+ fp = f* + p$(P, 8 z zt z 8 Pp). (2.16) 

The formulae (2.13) for a twisted coproduct are modified as follows 

A ~ ( M , , )  -, A ~ ( M , , )  + P:(P, 8 z+ ZQ PJ + P ~ P ,  8 z - z 8 pp). (2.17) 

With the choice (2.16), the explicit formula for the universal R-matrix is given by 

R = exp(-2j?) 
= exp(-2pY(Pp 8 PUPu 8 Pp)) 
= exp(-2p!(PF 8 Z - Z 8 PJ). 

The invariant tensor (2.3) takes the form 

(2.18) 

U = exp(-hYp,. P” - 2p$p,, . z) (2.19) 

and using the formula SF = US0U-l one obtains 

F(‘1 s 
SF”’(Mpy) = -Mpu - 2(0r+,~P, - O~,~P,P,) - (p+,P, - p+”P,). 2. 

(PJ = SO(P,) = -Pp 
(2.20) 

The reality conditions for the parameters p+” take the form 

(0 
(ii) 

+ - involution : p$ real 

8 - involution : (p:y = p!. 
(2.21) 

In this section we consider classical twisted Po incd  algebras, parametrized by 
multiparameter twist functions. These Hopf algebras use duality relations to determine 
multiparameter deformations of the functions of the Poincare group. Using the duality 
relation between multiplication and comultiplication 

one sees easily that all the antisymmetric contributions to the twisted coproducts (see 
equation (2.13)) lead to non-commutativity of the generators of the corresponding dual 
quantum Poincar6 group. 

It is an interesting exercise to compare the dual quantum Poincare groups with the 
classical twisted Poincar6 algebras. 
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3. An example: Chaichian-Demiczev quantum Poinear6 algebra 

We shall show that the example of a q-Poinca6 algebra, given in [lo], is isomorphic as a 
Hopf algebra to the twisted classical Poincarti algebra. First, we shall describe the complex 
classical Lorentz algebra SO(4; C) = SO(3; C) 8 SO(3; C) as follows 

[ei. e-j]  =&hi [hi, hj] = 0 [hi, e+j] = &2sije+j (3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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one can identify the transformed classical Lorentz algebra (3.3) with the q-deformed Lorentz 
algebra proposed in [ 101 with the coproduct 

AF(Ll) = El @ I + q-’(’StL6) €3 L 1 

A F ( i z )  = I @ i2 + iz €3 q-’(&-l6) 

Introducing four-momentum operators, which in the basis (3.2) will satisfy the following 
covariance relations with Lg, Lg, 

and the coproducts 

(3.8) 

(3.10) 

(3.11) 

The relations (3.10), (3.11) describe the translation sector of the Chaichian-Demiczev 
quantum algebra. 

Let us recall that recently the quantum Lorentz groups have been classified by 
Worononowicz and Zakrzewski 1131, where, besides the Drinfeld-Jimbo parameter q.  a 
new parameter t was introduced. It can be shown that the quantum deformation, proposed 
by Chaichian and Demiczev, corresponds to q = 1. This condition, as the necessary 
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requirement for the existence of a non-trivial quantum deformation of the Poincar6 algebra, 
with the Lorentz part as the Hopf subalgebra, has been obtained in [14] (see also [15]). 

It should be stressed that in [I31 there were also given other examples of the quantum 
deformations of the Lorentz group which satisfied the condition q = 1 and could be extended 
to the quantum deformations of the Poincare algebra without supplementing an eleventh 
dilatation generator. It would be interesting to prove the conjecture that all quantum 
deformations of the Poincare algebra which have the deformed Lorentz algebra as their 
Hopf subalgebra are classical twisted Po incd  algebras. 

We would l i e  finally to mention that it is possible to obtain the Poincar6 quantum group 
as well as the Poincar6 quantum algebra with the Drinfeld-Jib deformation parameter 
q # 1, if we assume a braided structure for the tensor products, i.e. we consider the 
deformations in the framework of braided quantum groups and algebras (see, e.g., [16]). 
In such a case the parameter q enters into the definition of the braided tensor product of 
the Lorentz generators and the translation generators [I41 (see also [17,18]). In this paper, 
however, we assume the standard ‘bosonic’ relations for the tensor categories. 

4. Discussion 

4.1. Representation theory of twisted Poincard algebra 

The theory of irreducible representations of twisted Poincar6 algebras is described by the 
conventional Wigner representations for the Po incd  algebra [1,2]. The twisting can be 
interpreted as a modification of the tensor products for relativistic bee particle states, in 
particular the two-particle sectors in a relativistic Fock space. The tensor product 11) @ 12) 
of two free one-particle states (i = 1,2) 

li) = I,(i), (4.1) , PE), sf’) 

can be modified as follows 

11) @ F  12) = F(c(’),  c(2))ll) @ 12) (4.24 

where (cu = E+ + U-) 
~ ( c ‘ ” ,  c@’) = expcuijcj 1) cj (2) . (4.2b) 

Let iU denote the algebra describing the levels of the representation space (for (4.1) 
iU = (Pp, S3), where S, = ~C,~,,~M”PP‘) and let 6 denote the Casimirs parametrizing 
by their eigenvalues the representations 6 = (PwPJ’. SpSJ’) for P4. One can distinguish 
the following two cases: 

(i) [q. 21 = 0. This corresponds to our choice (iv) (see (2.11). (2.13)). In such a case 
the twisted tensor product of two representations (4.1) describes the fixed four-momenta 
components of the wavepacket 

11, 2)F = exp(or”yp$’p~2))11) 8 12). (4.3) 

For dimensional reasons one should put cup” = (l/KZ)aJ’” (K-ws- l i e  parameter). If we 
assume that a,” has negative eigenvalues, one obtains from (4.3) the Gauss-lie two-particle 
wavefunction. 
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(ii) [ci, &I # 0. Such a case is decribed by the choices (i), (ii), (iii) of the twist function 
given in section 2 as well as the example described in section 3. In such a case, twisted 
two-particle states described by (4.2) are not eigenvalues of the 'two-particle observable' 
A'(&), because 

A'(&) = F . A(&). F-' # A(&). (4.4) 

For the four-momentum operators the additivity of the four-momenta eigenvalues is modified 
by the formula 

AF(Pp)  = F ,  (Pp@ 1 + 1 @ P p ) .  F-'. (4.5) 

In our example in section 3, formula (4.5) takes the form (3.11). The physical interpretation 
of generalized wavepackets (4.24 with the modified addition for the four-momenta is not 
clear. 

4.2. lkristed Poincart! algebrafrom the contraction of U , ( 0 ( 4 , 2 ) )  
In a recent paper [12] two of the present authors proposed the contraction of Uq(O(4, 2)) 
to a quantum Poincare algebra It can be shown that the result of the contraction is a 
twisted Poincar6 algebra with the twist function depending on the four-momenta and one 
central chage Z (see (2.16)) obtained fiom the contraction of the dilatation generator in the 
conformal algebra. 

4.3. Non-Abelian choice of twistfunctions 

It is interesting to consider more general classes of twisting functions with F spanned by 
non-Abelian sectors of the algebra. In particular, such a twisting function is provided by the 
universal R-matrix, which interchanges two non-cwomutative coproducts A and A' = U. A 
of a quantum algebra. It is known that for Drinfeld-Jiibo deformations U&) of simple 
Lie algebras the universal R-mahix can be decomposed into the product [19,20] 

(4.6) 

where 

Ru = expqm(a,(q)eu @ 4 (4.7) 

and K depends only on the Cartan generators. It appears that any component (4.7) of the 
product (4.6) can be used as a twist function F [21]. Because a&) is proportional to 
q - q-I, the twisting with F = Rc can be introduced only for genuine quantum algebras 
(q'$ 1). It is interesting to find non-trivial twist functions for quantum K-Poincar6 algebra 
proposed in [22, 231. Because the universal R-matrix for K-Poinca6 algebra is not known, 
the type of twisting proposed in 1211 cannot be applied. 
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