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Abstract. We consider the twisting of the Hopf structure for the classical enveloping algebra
U(g), where § is an inhomogenous rotation algebra, with explicit formulae given for the
D = 4 Poincaré algebra (§ = P;). The comultiplications of twisted UF(Ps) are obtained by
conjugating the primitive classical coproducts by F € U(&)®U(¢), where ¢ denotes any Abelian
subalpebra of Pu, and the universal R-matrices for UF (Py) are triangular. As an example we
show that the quantum deformation of the Poincaré algebra recently proposed by Chaichian and
Demiczev -is a twisted classical Poincaré algebra. The interpretation of the twisted Poincaré
algebra as describing relativistic symmetries with clustered two-particle states is proposed.

1. Introduction

Let us consider the Poincaré algebra P, with the generators § = (P,., My,) as a classical
Hopf algebra, We supplement the well known algebraic relations

[Mum Mpt] = i(gj.u'Mvp - gurM,up + gvaur - g_t.l:pMUf)

(Myv, Pyl =i(gup Py — 8o Py) (1.1)
[Ppu P]=0 7

by the ‘primitive’ coproduct relations

AyMu) =M ®1+10M,,

1.2)

AP)=P,®1+18Q P,
and the antipode S3(8) = —g (§ € P4). Relations (1.1) lead to the well known Wigner
theory of representations of the Poincaré algebra [1,2] which are spanned by the Hilbert
vectors |m, s; py, S3), where m and s describe, respectively, the eigenvalues of mass and the
relativistic spin (Pauli-Lubanski) Casimir, p,, is the four-momentum and 3 (—5 € 53 € 5)
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describes the spin-projection values. The coproduct formula dictates how to calculate the
action of the Poincaré generators on the tensor product.

The quantum deformations of the Poincaré algebra are described by modifications to
the relations (1.1), (1.2} preserving the Hopf-algebra structure (for the general framework
see, e.g., [3,4]). In this paper we would like to consider the mildest quantum deformations
of (1.1}, (1.2} obtained by the twisting procedure [5-9]. Following Drinfeld [5], two Hopf
algebras A = (4, A, S, &) and A" = (4, AT, §F, &) are related by twisting if there exists
an invertible function F = }; £; ® f! € A® Aj satisfying the ‘cocycle’ condition [5,7, 8]

Fp(l®@ AYF = Fiz{A @ IF (1.3}

and ¢ @ DF = (1 ®&)F = 1. In such a case AT and A are related as follows
(@®b-c@d=ac®bd)

AF@=F.A(a)- F. (1.4a)
Introducing U = Y, fi - S(f7) one also obtains that

S¥ @) =US@U™. (1.40)
If A is the quasi-triangular Hopf algebra and relations (1.3) are replaced by [5, 6]

(A®D)F = FaPps (1@ AYF = F3Fp (1.5

then the universal R-matrices for .4 and A” are related by the formulae (F = o - F =
e

RF=F'.R.F. (1.6)
For the complex simple Lie algebras £, twistings described by

F=expf feEE®E .n

where ¢ is a subalgebra of 2 (Cartan subalgebra in [6], Borel subalgebra in [8]) were
considered. It is easy to check that if f € £ ® ¢ and ¢ is Abelian, then conditions (1.5) are
valid,

In this paper we shall consider the twisting of the physically important case of
inhomogeneous rotation algebras § = O(D —k, k) © Tp, in particular the D = 4 Poincaré
algebra ¢ = O(3,1) ® 74 In such non-simple algebras one can select a commutative
subalgebra ¢ in several ways, using, e.g.,

(i) a Cartan subalgebra (k1 ..., hy) (n = 1D for D even, n = (D — 1) for D odd);

(if) translation generators (P;...Pp); or

(iii) a “mixed’ Cartan—translation algebra Cy (% < 3D)

C.=(h1...h, Pt ... Pp). (1.8)

The aim of this paper is (i) to describe the twistings of U;(P;) depending on Cartan
generators and translation generators and (ii) to provide an interesting example.

In section 2 we shall consider in an explicit way the twisted I = 4 Poincaré algebras
UF (Py) with the choice of algebra § (see (1.7)) described by formula (1.8) with £ =0, 1, 2.
Further generalization in the presence of central generators Z; ([Z;, 71 =0 for § € Py)
is alse given. In section 3 we shall discuss, as an example of a classical twisted Poincaré
algebra, the quantum Poincaré algebra considered recently by Chaichian and Demiczev {10].
In section 4 we shall discuss the elements of the representation theory of twisted Poincaré
algebras and present an outlook: some generalizations as well as unsolved problems.

% Strictly speaking, we consider below F as belonging to an extension of A @ A,
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2. Twisting of the classical Poincaré algebra
Let us denote the basis of the commutative algebra 6(F € é® &) by (c1...c,). We define

F=F.F_ Fi=expfs 2.1
where fi = o - fi (o is the exchange map: o(c; ® ¢;) = ¢; @ ¢;) and

B =P ogtegec) 2.2)

i.e. one can assume that oy;; = o j;.
If we twist the coproducts of the classical Lie algebra we obtain from the commutativity
of £ that

U=Y_ fi-S(f') = exp(—ey;jcicy) 2.3)
and after using (1.6) the R-mattix takes the particular rform
R=exp(=2f.)=(F.) 2 ' 2.4)

The formulae for the coproduct A depend on the particular choice of the algebra é. We
shall further specify our algebra for the case of classical Poincaré algebra (1.1) and we shall
consider the following three types of twist function:

() ¢ = (M3 = M1z, N3 = My).
We postulate
fr=o M3 @ M3+ B (Mz®@N; + N3 @ M3) + y4 N3 ® N3
f-=B_(M3® N3 — N3 ® M3).

(2.5)

One obtains (M; = %Efjijk; My= M XiMy; N; = My, P = Py +1P)

AF (M) = Me ® e cos(By) + e=* cos(B2) @ My

+ Ni ® eF4 gin(By) & et sin(B,) @ Nz
AF(M) =My @14+ 10 M; '
AF(Ny) = Ny @ e™ cos(B)) + e cos(B;) ® Ny

F M: ® e54sin(By) F 65 5in(By) @ M2 (2.6)
ATN) =Ns@1+10 M5 '
AP (P =P @e* +e* g P,
AF(P3) = Py ® cos(By) + cos(B,) @ P3 + iPp ® sin(B;) +isin(B2) ®@ Py
AF(Py) = Py ® cos(By) + cos(Bz) ® Py +1P3 ® sin(By) + isin(Bz) @ P
where

Ap =y Ms + (B — (1P B)N;

Be=paNs+ (B + (~DFAM,
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(i} &é = (M3 = My, P3, By).
We assume that (r, 5 =3, 0)
f+=°‘+M3®M3+a.r;.(M3®Pr+Pr®M3)+PfPr®Ps o
f-=8.(M;® P, — P, ® M), '

One obtains

AP (My) = My ® €54 + 654 @ My + Py @ Bae* £ e*MC; @ Py

AP (M) =M;@1+1@ M;

AT(Ny) = Ny @ €4 + &*4 @ Ni —iPy ® Boe*™! + Coec** @ P

AF(N) =N @ 1+1®N; —iPs®@Bo+ Co@ Ps+ Po® Bs+ i ® By
AF(P) = P ® cosh(A;) + cosh(4z) @ Py +iP; @ sinh(4;) + isinh(42) ® P,
AF(P,) = P, ® cosh(A;) + cosh(42) ® P, — iP) ® sinh(4;) — isinh(4z) ® P,
AF(PY)=P®1+1@ P

A P)=RB1+10 R

where

(2.8)

Ay =a M3+ (8L +81) P B, = (8, — )M+ p By
Az =y Ms+ (3, —8T)P, Cr = pf P+ (3 + L) M;.

(i) € = (P1, P2, N3 = M30).
Patting (e, b=1,2)

fr=02P, @ P, +52(N3 ® Pa+ P, ® N3) + y: N3 @ N 29
fo=E2(N2® B, — P, ®Ns).
One obtains
AT (My) = Mz ® cos(4;) + cos(Az) @ My £ {N: @ sin(A;) + sin(Az) ® Nz}
T {P; ® (By £ iBy) cos(A;) + (C1 = iC3) cos(42) @ P3}
Fi{Py ® (By £1iBy) sin(4;) + (€1 £ iC2) sin(Az) ® Po}
AFM) =M;01+10 M
~i{P,®B1+C1® P} +i{Pi® B, +C,® Py}
AF(Ny) = Nz ® cos(A1) + cos(A2) ® Nu F (M @ sin(A1) + sin(Az) @ My}
— i Py ® (B; £ iBy) cos(4;) + (C1 £iC3) cos(42) @ Po}
+ P; @ (B £iBy)sin(A)) + (C, £1G;) sin(47) ® B
AF(N) =N @ 1+1QN;
AF(PL)=P.®1+1® Py
AF(P)) = P, ® cos(A;) + cos(Az) @ P; + 1P ® sin(A1) + isin(4,;) @ Py
AF(Py) = Py ® cos(A1) +cos(Ay) ® P+ 1Py @ sin(A;) + isin(4;) ® Py

(2.10)
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where

By £iBy = (o} £1pP) P + (£} £if? — (EL £iE2)N;

C1£iC; = (ol 2ip®) Py + (E] £182 + &L £ iE2)N;.

(iV) a= (P]s PZ: P31 PO)'
One can write (o} = £05*)

f+=P£u(Pn®Pv+Pv®Pu)

(2.11)
f—=pﬁv(Pa®Pv"Pv®P.u)-
Because the split Casimir
™" = A(P,P*)— P,P*®1-1@® P,P* =2P, ® P* 2.12)

commutes with A(3) for any & € U(Py), one can assume further that P Ny = plt =
(M = diag(l, -1, -1, —=1)).
The formulae for the copreduct take the form
AF(MHU) = M,H—U ® 1 + 1 ® Muv
+ (0'-'+y.ppv - 0‘+va#) @F+F® (05+;L'0Pu - ﬂf+upPp.)
+ @y’ Py = 6P P) @ Py~ P, ® (6_” Py — 01, B,)
AFf(PYy=P,®1+1Q P,. '

C@213)

In general we assume that the Poincaré algebra is the complex one and that the twist
function parameters are also complex. The reality condition imposed on the Poincaré
generators imply the reality conditions for the coefficients in formulae (2.5), (2.7), (2.9)
and (2.11). For simplicity we shall consider the last exarple of the twist function, given by
{2.11). 1t is known that if the rea} structure is an antihomomorphism in the algebra sector,
one can still impose two types of reality conditions on the generators of twisted Poincaré
algebra [10, 11]:

(i) The standard one, denoted in [11] by +. In the case of formulae (2.13) one obtains

(AMNT = AM,,) = ofF real. (2.14a)
(i1} The non-standard one, used, e.g., in [12], and denoted in {11] by &. In such a case
(AM)® = A(My,) = o = (&™)* (2.14b}

i.e. the matrix o = (%} is Hermitian.
Finally we consider the extension of 3 by an Abelian algebra £(§ — £ & %) with

za(A =1, ..., m) describing the central charges. The formulae (2.2) determining the twist
function can be extended as follows

foo P = fr+iua@® Za £ Zs ®cy).. (2.15)
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The candidates for Z, are the central charges as well as the Casimir operators. As an
example, we shall consider case (iv) with one central charge Z, i.e. we assume that formulae
(2.11) are extended as follows

foor £ = fo+ PE(PLQZEZ O PY). (2.16)
The formulae (2.13) for a twisted coproduct are modified as follows
AF M) > AT (ML) + o (PL®Z+ZRP)+ 0o (Pu®Z—ZQ Py). (2.17)
With the choice (2.16), the explicit foxmula for the universal R-matrix is given by
R = exp(—2f%)
= exp(~2pL” (P, ® P,P, ® Py))
= exp(—20%(P, @ Z - Z ® PL)). (2.18)
The invariant tensor (2,3) takes the form
U=exp(—2af’ P, - P, — 205 P, - Z) (2.19)

and using the formula ST = U SyU ! one obtains

SFP,) = So(P) = =P,

, (2.20)
ST (M) = =My = 204 Py ~ P Py Pp) — (010 Py — pyuPu) - Z.
The reality conditions for the parameters g% take the form
(1)) + — involution : pf real
* @2.21)
(ii) @ — involution : (p})* = p~.

In this section we consider classical twisted Poincaré algebras, parametrized by
multiparameter twist functions. These Hopf algebras use duality relations to determine
multiparameter deformations of the functions of the Poincaré group. Using the duality
relation between multiplication and comultiplication

{a-b,c}=(a®b, Alc)) (2.22)

one sees easily that all the antisymmetric contributions to the twisted coproducts (see
equation (2.13)) lead to non-commutativity of the generators of the corresponding dual
quantem Poincaré group.

It is an interesting exercise to compare the dual quantum Poincaré groups with the
classical twisted Poincaré algebras,
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3. An example: Chaichian-Demiczev quantum Poincaré algebra
We shall show that the example of a g-Poincaré algebra, given in [10], is isomorphic as a

Hopf algebra to the twisted classical Poincaré algebra. First, we shall describe the complex
classical Lorentz algebra SO(4; C) = SO3; C) & §0(3; C) as follows

[ei, e—;] = &k (i, 8;]1=0 [h;, ex;] = £28;5€4; G.1
where (e, e..1, #1) and (es, e_3, hi;) describe two O(3; C) sectors.
Introducing
Ly=e Ly=e Ls = J(h1 + h2)
(3.2)
Li=e;  Li=ep Ls=hg— )
one obtains the relations
[L1, Ls} =L, [L2,Ls] = L2
[L1, Lel = —Ly [L2, L]l = L2
[L1,Ls]=Lg—Ls [L2, L3l =Lg+ Ls 33)
[L3, Ls] = —Ls [Ls, Ls] = —Ls4
[L3, Lg] = —Ls . [La,Lg]l=1L4
[L1, Lo] = tLy, L] = [La, La] = [L3, Ls] = [Ls, Lg] =0
where @=1,...,6)
AlL))=L,®@I+IQL,. 3.4)
Let us perform the twist of this coproduct
F = gh®h — gUstlo@ls—Le)
One gets (AF (L) =F - A(L,)- F)
ALy =L @I +q Xt g,
AT(Ly)=1@ Lo+ Ly ® g~ s™to)
AT(L3) =1® L3 + Ly @ g*5719 55
AP(LYy=Li @I+ 0@ L,
AF(Ls) = A(Ls)
AT (Lg) = A(Le).
Introducing
L=1 Ly =g 2Lyq Hs7te)
E3 = g2 Lsqg?tsLe La=Ly (3.6)

Ls=1Ls Le=Lg
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one can identify the transformed classical Lorentz algebra (3.3) with the g-deformed Lorentz

algebra proposed in [10] with the coproduct

AF(E) =1, @I 4+g st g,
ATy =1)L, + Ly ® g ¥s=Ls)
AP =1 @ L5+ L3 ® g¥Es—Io
AFiy=Li@l+tog],
AF(Ls)=Ls@I+1®Ls
AMig=Le@I+I®Ls

G.7

Introducing four-momentum operators, which in the basis (3.2) will satisfy the following

covariance relations with Ls, Lg,

[P, Ls] =P [P, Ls]=0

[Ps, Ls] = — P [Py, Ls] =0

[P, Lgl =0 [Pa, Lg]l = P

[P35L5]=0 [P4’L6]=‘-P4
one obtains after the nonlinear transformation

Py =gtslspy Py =gt b,

Py = gtsls py Py=qgllsp,

the relations

[B, Bylp = [By, Pl = [Po, Byl = (B3, B)p =0

[Py, B3] =[Py, Bi]=0

and the coproducts
AFP) =P ®@1+47%® B
APy =Po1+¢ 0 B
AF(B)=B®l+dme B
AF(P) =P®@1+q 5@ P

(3.3)

(3.9)

(3.10)

(3.11)

The relations (3.10),(3.11) describe the tramnslation sector of the Chaichian-Demiczev

quantum algebra.

Let us recall that recently the quantum Lorentz groups have been classified by
Worononowicz and Zakrzewski [13], where, besides the Drinfeld-Jimbo parameter g, a
new parameter ¢ was introduced. It can be shown that the quantum deformation, proposed
by Chaichian and Demiczev, corresponds to ¢ = 1. This condition, as the necessary
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requirement for the existence of a non-trivial quantum deformation of the Poincaré algebra,
with the Lorentz part as the Hopf subalgebra, has been obtained in [14] (see also [15]).

It should be stressed that in [13] there were also given other examples of the quantum
deformations of the Lorentz group which satisfied the condition ¢ = 1 and could be extended
to the quantum deformations of the Poincaré algebra without supplementing an eleventh
dilatation generator. It would be interesting to prove the conjecture that all quantum
deformations of the Poincaré algebra which have the deformed Lorentz algebra as their
Hopf subalgebra are classical twisted Poincaré algebras.

We would like finally to mention that it is possible to obtain the Poincaré quantum group
as well as the Poincaré quantum algebra with the Drinfeld-Jimbo deformation parameter
g # 1, if we assume a braided structure for the tensor products, i.e. we consider the
deformations in the framework of braided quantum groups and algebras (see, e.g., [16]).
In such a case the parameter g enters into the definition of the braided tensor product of
the Lorentz generators and the translation generators [14] (see also [17, 18]). In this paper,
however, we assume the standard ‘bosonic’ relations for the tensor categories.

4, Discussion

4.1. Representation theory of twisted Poincaré algebra

The theory of irreducible representations of twisted Poincaré algebras is described by the
conventional Wigner representations for the Poincaré algebra [1,2]. The twisting can be
interpreted as a modification of the tensor products for relativistic free particle states, in
particular the two-particle sectors in a relativistic Fock space. The tensor product |1) ® |2)
of two free one-particle states (i = 1, 2)

i) = Im@, 59, p2, 5% (4.1)
can be modified as follows

11 ®F [2) = F(c", M) @ 12) (4.20)
where (¢ = oy + )

F(cD, @y = eXp o cm (2) (4.25)

Let & denote the algebra descnbmg the levels of the representation space (for (4.1)
& = (Py, S3), where §, = swp,M v Py and let O denote the Casimirs parametrizing
by their eigenvalues the representations & = (P, P*, 5,5%) for Py4. One can distinguish
the fo]]owing two cases:

() [e, @] = 0. This corresponds to our choice (iv) (see (2.11), (2.13)). In such a case
the twisted tensor product of two representations (4.1} describes the fixed four-momenta
components of the wavepacket

11, 2)F = exp@@® p{’ pPH1) @ [2). (4.3)

For dimensional reasons one should put ¢*' = (1/k?)a™’ (k-mass-like parameter). If we
assume that @*¥ has negative eigenvalues, one obtains from (4.3) the Gauss-like two-particle
wavefunction.
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(it) [c;, &] # 0. Such a case is decribed by the choices (i), (ii), (iii) of the twist function
given in section 2 as well as the example described in section 3. In such a case, twisted
two-particle states described by (4.2) are not eigenvalues of the ‘two-particle observable’
AF (&), because

AF@y=F.A@) - F71 # A(@). 4.4)

For the four-momentum operators the additivity of the four-momenta eigenvalues is modified
by the formula

Af(P)=F - (P,®1+1®@PR,) -FL (4.5)

In our example id section 3, formula (4.5) takes the form (3.11). The physical interpretation
of generalized wavepackets (4.22) with the modified addition for the four-momenta is not
clear,

4.2. Twisted Poincaré algebra from the contraction of U,(0(4,2))

In a recent paper [12] two of the present authors proposed the contraction of U, (0 (4,2))
to a quantum Poincaré algebra. It can be shown that the result of the contraction is a
twisted Poincaré algebra with the twist function depending on the four-momenta and one
central charge Z (see (2.16)) obtained from the contraction of the dilatation generator in the
conformal algebra.

4.3. Non-Abelian choice of twist functions

1t is interesting to consider more general classes of twisting functions with F spanned by
non-Abelian sectors of the algebra. In particular, such a twisting function is provided by the
universal R-matrix, which interchanges two non-cocomutative coproducts A and A’ =¢o-A
of a quantum algebra. It is known that for Drinfeld-Jimbo deformations Uy (g) of simple
Lie algebras the universal R-matrix can be decomposed into the product [19, 20]

ae A
where
Ry = expgu(as(g)es. ® e—z) 4.7

and K depends only on the Cartan generators, It appears that any component (4.7) of the
product (4.6) can be used as a twist function F [21]. Because a,(g) is proportional to
g — g}, the twisting with F = R, can be introduced only for genuine quantum algebras
(g 1. It is interesting to find non-trivial twist functions for quantum «-Poincaré algebra
proposed in [22,23]. Because the universal R-matrix for x-Poincaré algebra is not known,
the type of twisting proposed in [21] cannot be applied.
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